Analysis of Disparity Maps for Detecting Saliency in Stereoscopic Video

نویسندگان

  • Stephan Kopf
  • Benjamin Guthier
  • Philipp Schaber
  • Torben Dittrich
  • Wolfgang Effelsberg
چکیده

We present a system for automatically detecting salient image regions in stereoscopic videos. This report extends our previous system [4] and provides additional details about its implementation. Our proposed algorithm considers information based on three dimensions: salient colors in individual frames, salient information derived from camera and object motion, and depth saliency. These three components are dynamically combined into one final saliency map based on the reliability of the individual saliency detectors. Such a combination allows using more efficient algorithms even if the quality of one detector degrades. For example, we use a computationally efficient stereo correspondence algorithm that might cause noisy disparity maps for certain scenarios. In this case, however, a more reliable saliency detection algorithm such as the image saliency is preferred. To evaluate the quality of the saliency detection, we created modified versions of stereoscopic videos with the non-salient regions blurred. Having users rate the quality of these videos, the results show that most users do not detect the blurred regions and that the automatic saliency detection is very reliable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach to Background Subtraction Using Visual Saliency Map

Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...

متن کامل

Stereoscopic visual saliency prediction based on stereo contrast and stereo focus

In this paper, we exploit two characteristics of stereoscopic vision: the pop-out effect and the comfort zone. We propose a visual saliency prediction model for stereoscopic images based on stereo contrast and stereo focus models. The stereo contrast model measures stereo saliency based on the color/depth contrast and the pop-out effect. The stereo focus model describes the degree of focus base...

متن کامل

Saliency Detection and Tracking Of Stereoscopic Images and Videos

Saliency detection is believed to be an important precursor for a vast number of multimedia processing applications. Besides 2D saliency detection methods, depth feature is also considered to detect saliency in stereoscopic images as well as for videos. This paper presents an enhanced saliency detection framework, depending on the feature contrast of luminance, color, texture and depth, which i...

متن کامل

Compressed-Sampling-Based Image Saliency Detection in the Wavelet Domain

When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...

متن کامل

3D visual discomfort prediction using low complexity disparity algorithms

Algorithms that predict the degree of visual discomfort experienced when viewing stereoscopic 3D (S3D) images usually first execute some form of disparity calculation. Following that, features are extracted on these disparity maps to build discomfort prediction models. These features may include, for example, the maximum disparity, disparity range, disparity energy, and other measures of the di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013